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ABSTRACT 
We investigate a Liouville-Caputo fractional integro-differential equations (LCFIDEs) with nonlinearities which 

depends on the lower order fractional derivative of the unknown functions and also fractional integral of the 

unknown functions supplemented with non-local generalized Riemann-Liouville fractional integral (GRLFI) 

boundary conditions. The existence and uniqueness results are endorsed by LeraySchauder nonlinear alternative, 

and Banach fixed point theorem. Sufficient examples have also been supplemented to substantiate the proof and 

also we have discuss some variates of the given problem. 
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I. INTRODUCTION 
 

In this paper, we start the investigation of BVP of LCFIDEs enhanced with non-local GRLFI boundary conditions. 
In exact terms, we examine the existence and uniqueness of solutions for the accompanying LCFIDEs of the form:  

 
 

where , denote the Liouville-Caputo fractional derivatives  and

 are given continuous functions.  is the Riemann-Liouville fractional integral (RLFI) of 

order  and also  is the GRLFI of order  and are arbitrary constants. The study of 

fractional-order integro-differential equations (FIDEs) has gained considerable attention as such systems appear in 

the mathematical modelling of many real world problems. For some recent results on FIDEs, we refer the reader to a 

series of papers [1,4,5,7]. The popularity of fractional calculus tools in the mathematical modelling of many 
processes and phenomena is quite eminent. It has been mainly due to the fact that fractional-order operators are non-

local in nature in contrast to integer-order operators and are capable of tracing the past effects of the involved 

phenomena. For examples and details, see [6,10-12,14]. The topic of fractional-order BVPs has been addressed by 

many authors and a significant development on the subject can be witnessed in the recent literature. For some recent 

works, we refer the reader to [2,3,9,13] and the references cited therein. The rest of the paper is organised as 

follows: In Module 2, we portray the essential foundation material identified with our problem and proved an 

auxiliary lemma. Module 3 holds the main outcome. The validation of the solutions is done by providing examples 

in Module 4. Finally, we discuss some observations of the given problem in Module 5. 

 
 

II. PRELIMINARIES  
 

In this section, we introduce some notations and definitions of fractional calculus [8,10,12,14] and 
present preliminary results needed in our proof later. 
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The space of Lebesgue measurable functions where   and  

 

Definition 2.1   The GRLFI of order  and   of a function is 

defined as 

 
and 

 

for are called the left and right sided GRLFI of order respectively. The operators  and    are 

defined for   

Remark 2.1   The above definition for GRLFIs reduces to RLFIs for  

 
and 

 

Definition 2.2   The RL fractional derivative of order ,  is defined as  

 

 

where the function  has absolutely continuous derivative up to order  

Definition 2.3   The Caputo fractional derivative of order  for a function is defined as  

 

where the function  has absolutely continuous derivative up to order  

Remark 2.2   If  then 

 

Lemma 2.1   Let and be the given constants. Then 
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Lemma 2.2   For  the general solution of the FDE is given by 

where  

 

In view of Lemma 2.2, it follows that 

where  

 

Next, we present an auxiliary lemma which plays a key role in the sequel. 

Lemma 2.3  For   the solution of the linear FDE 

 
supplemented with the boundary conditions (2) is equivalent to the fractional integral equation 

 
where  

 
Proof.   It is evident that the general solution of the FDE in (3)  can be written as  

 

where are arbitrary constants. Using the boundary conditions (2) in (6)we get  And also, 

 

Substituting the values of   in , we get the solution  This completes the proof. 

We define the space  and  endowed with the norm 

 Observe that is a Banach space. In view of 

Lemma 2.3, we define an operator as follows: 

 
In this Module 3, we obtain some existence and uniqueness results by using LeraySchauder nonlinearalternative and 

Banach fixed point theorem. 
 

III. MAIN RESULTS 
 

To run the interface for the proof, we introduce the notations : 
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Theorem 3.2   Let  be a continuous function satisfying the conditions 

 

where is the Lipschitz constant. 

Let be a continuous function with and constants  

 
Then the BVP (1)-(2) has a unique solution if 

 

where are given by (11). 

 

Proof. Let us define  

 

where are given by (11)-(12) and  Then we show that  where  

 For  using we get 

 

 

 

 

 
 

Then, for we procure 
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, 

which, on taking the norm for yields  

Also we obtain 

 

 

 
which implies that  

 

Hence   

This demonstrate that maps  into itself. Now, for and for each we obtain 
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Also we obtain 

 
which implies that  

 

 
From the above estimates, we have 

 

 

Thus, in view of the condition (13), it follows that the operator is a contraction. Hence it follows by Banach fixed 

point theorem that the problem (1)-(2) has at most one solution on . 

 

Theorem 3.2Let be a Banach space, be a closed, convex subset of an open subset of and  

Suppose that is a continuous, compact (i.e., ) is a relatively compact subset of ) map. Then either 

has a fixed point or 

there is a (the boundary of in ) and with . 

 

Theorem 3.3   Let  is a continuous function and the assumption hold.Then 

 a function and a nondecreasing, subhomogeneous (i.e.,  

and ) function  

 

 a constant  

 
 

where  and  are given by (9),(10),(12). Then the BVP (1)-(2)  has at least one solution on . 

 

Proof.Consider the operator defined by (8). In the first step, we demonstrate that maps bounded sets 

into bounded sets in . For a positive number let  be a bounded set 

in  Then 



 
[Subramanian, 6(4): April 2019]                                                                                       ISSN 2348 – 8034 
DOI- 10.5281/zenodo.2639753                                                                                 Impact Factor- 5.070 

    (C)Global Journal Of Engineering Science And Researches 

 

148 

 

 

, 

which, on taking the norm for yields  

Also we obtain 

 

 

 

 

Hence   
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Also we obtain  

 
which implies that  

 
 

Obviously the right hand side of the above inequalities tends to zero independently of as As

satisfies the above assumptions, it follows by Arzela-Ascoli theorem that  is 

completely continuous. 

 

The result will follow from the Leray-Schauder nonlinear alternative (Theorem 3.2) once we have proved the 

boundedness of the set of all solutions to equations  for . Let be a solution. Then, for  

and using the computation in proving that is bounded, we have 

 

 
 

which, on taking the norm for yields  
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Also we have 

 

 
which implies that  

 

Consequently   

Hence, we have  

 
 

In view of  there exists such that Let us set 

 
 

Note that the operator is continuous and completely continuous. From the choice of  there is 

no such that  for some Consequently, by the nonlinear alternative of Leray-

Schaudertype (Theorem 3.2) we deduce that  has a fixed point which is a solution of the problem (1)-(2). 

This completes the proof. 

 

Remark 3.4   Setting  in the BVP (1)-(2), the GRLFI boundary conditions reduces to RLFI boundary 

conditions 

 

 
 

In this case the values of and   are found to be 

 

 

 

 
 

 

 
 



 
[Subramanian, 6(4): April 2019]                                                                                       ISSN 2348 – 8034 
DOI- 10.5281/zenodo.2639753                                                                                 Impact Factor- 5.070 

    (C)Global Journal Of Engineering Science And Researches 

 

151 

where the operator (8) modifies to the form  

 
where  

 
 

Corollary 3.5   Let  and  are continuous functions and the 

assumptions  and   holds. Then the BVP (14) has a unique solution on provided that 

 

where  is defined by (17). 

Corollary 3.6   Let  be a continuous function and the assumptions  and   

holds. Then the BVP (14) has at least one solution on provided that 

 

where  is defined by (15) and (16) respectively. 

 

IV. EXAMPLES 
 
Example 4.1   Consider the following BVP of LCFIDEs given by 

 

 

Solution : Here,                                                     

 

We able acquire those values by utilizing the specified information,  

Since , it is clear that 
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has at most one solution on  

 

Example 4.2   Consider the following BVP of LCFIDEs given by  

 
supplemented with the boundary conditions of Example 4.1 

Solution:Here,                                                                   

 

We able acquire those values by utilizing the specified information   

has at least one solution on . 

 

V. DISCUSSION 
 

Here, Two cases where been discussed, and also  happens to be case 1, case 2 is for . Rest of the 

values are kept in common for problems (19) and (14). Problem (19) signifies the LCFIDEs with nonlocal GRLFI 

conditions and Problem (14) delineates the LCFIDEs with nonlocal RLFI conditions. At this point the assumption 

value of uniqueness of solutions for the problem (19) is  and is illustrated in Figure. 1, Likewise, depicts the 

assumption value for the problem (14) and is represented in Figure.2. Here we demonstrate the comparison results of 

assumption values of the problem (19) and (14). From the above said figure we justify the values of  by 

showing the influence of  for its differing values on the characteristics of generalized fractional integral operator. It 

is evident from the figure that when , we are able to get positive solutions under the assumptions of Theorem 

3.1. According to Figure.1 and Figure.2, the behaviour of generalized fractional integral operator with respect to  

leads to a new path regarding control applications. 

 
Figure.1 [Case.1] 
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Figure.2 [Case.2] 

 

VI. CONCLUSION  
 

We came to realize that in favor of the results stated at the top, the problem of LCFIDEs with non-local GRLFI 

boundary condition holds good for existence conditions. Thus the problem defined in the article becomes viable. 

Besides, the reader shall further evolve the problem with abundant ideas with certain persistent estimates of the 

parameter associated with the problem. We enrolled below few special cases. 

 

If , , after that we acquire the solution for the problem of LCFIDEs with non-

local Stieltjes integral and RLFI boundary conditions. 

 

If  in that case, we come to have the results for the problem of LCFIDEs with non-local RLFI 

boundary conditions. 
 

If ,we get the results for the problem of LCFIDEs with non-local Stieltjes 

integral boundary conditions.  

 

If  in that case, after that we acquire the solution for the problem of LCFIDEs with non-local GRLFI 

boundary conditions.  

 

If , in that case, we come to have the results for the problem of LCFIDEs with non-

local Stieltjes integral and GRLFI boundary conditions. 
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